X

Posts with Citations

+
L'universo spiegato a mia sorella
Non voglio fare concorrenza alla splendida spiegazione di Amedeo o a quella tecnica di Corrado, ma mia sorella, leggendo il post di pancia scritto nella sera dell'annuncio di BICEP2, ha candidamente confessato di non aver capito cosa era accaduto quel giorno. E allora proviamoci, a raccontarlo. (da The Cartoon History of the Universe #1 di Larry Gonick)C'era una volta un'idea di universo, che era la Terra al centro, quindi il Sole, la Luna e gli altri pianeti e sullo sfondo le stelle fisse, […]

Hubble E. (1929). A relation between distance and radial velocity among extra-galactic nebulae, Proceedings of the National Academy of Sciences, 15 (3) 168-173. DOI:

Gamow G. (1948). The Evolution of the Universe, Nature, 162 (4122) 680-682. DOI:

Alpher R.A. & Herman R. (1948). Evolution of the Universe, Nature, 162 (4124) 774-775. DOI:

Alpher R., Bethe H. & Gamow G. (1948). The Origin of Chemical Elements, Physical Review, 73 (7) 803-804. DOI:

Peebles P.J.E., Schramm D.N., Turner E.L. & Kron R.G. (1994). The Evolution of the Universe, Scientific American, 271 (4) 52-57. DOI:

McLeish T.C.B., Bower R.G., Tanner B.K., Smithson H.E., Panti C., Lewis N. & Gasper G.E.M. (2014). History: A medieval multiverse, Nature, 507 (7491) 161-163. DOI:

Citation
+
Big data, prediction, and scientism in the social sciences
Much of my undergrad was spent studying physics, and although I still think that a physics background is great for a theorists in any field, there are some downsides. For example, I used to make jokes like: “soft isn’t the opposite of hard sciences, easy is.” Thankfully, over the years I have started to slowly […]

Lazer, D., Kennedy, R., King, G. & Vespignani, A. (2014). Big data. The parable of Google Flu: traps in big data analysis., Science, 343 (6176) 1203-1205. PMID:

Citation
+
La serie infinita del triangolo aureo
Un triangolo aureo è un triangolo isoscele in cui il rapporto tra uno dei lati uguali con la base è pari alla sezione aurea $\varphi$. Utilizzando un triangolo aureo di lato 1, è possibile dimostrare che \[1 + \frac{1}{\varphi^2} + \frac{1}{\varphi^4} + \cdots = \varphi\] \[\frac{1}{\varphi} + \frac{1}{\varphi^3} + \cdots = 1\] \[\frac{1}{\varphi} + \frac{1}{\varphi^2} + \frac{1}{\varphi^3} + \cdots = \varphi\] Il triangolo aureo qui sopra è lo screenshot della applet realizzata da Irina […]

Edwards S. (2014). Proof Without Words: An Infinite Series Using Golden Triangles, The College Mathematics Journal, 45 (2) 120-120. DOI:

Citation
+
La serie infinita del triangolo aureo
Un triangolo aureo è un triangolo isoscele in cui il rapporto tra uno dei lati uguali con la base è pari alla sezione aurea $\varphi$. Utilizzando un triangolo aureo di lato 1, è possibile dimostrare che \[1 + \frac{1}{\varphi^2} + \frac{1}{\varphi^4} + \cdots = \varphi\] \[\frac{1}{\varphi} + \frac{1}{\varphi^3} + \cdots = \1] \[\frac{1}{\varphi} + \frac{1}{\varphi^2} + \frac{1}{\varphi^3} + \cdots = \varphi\] Il triangolo aureo qui sopra è lo screenshot della applet realizzata da Irina […]

Edwards S. (2014). Proof Without Words: An Infinite Series Using Golden Triangles, The College Mathematics Journal, 45 (2) 120-120. DOI:

Citation
+
Kleene’s variant of the Church-Turing thesis
In 1936, Alonzo Church, Alan Turing, and Emil Post each published independent papers on the Entscheidungsproblem and introducing the lambda calculus, Turing machines, and Post-Turing machines as mathematical models of computation. A myriad of other models followed, many of them taking seemingly unrelated approaches to the computable: algebraic, combinatorial, linguistic, logical, mechanistic, etc. Of course, […]

Dershowitz, N. & Gurevich, Y. (2008). A natural axiomatization of computability and proof of Church's Thesis, Bulletin of Symbolic Logic, 14 (3) 299-350. DOI:

Citation
+
When gaming is NP-hard
by @ulaulaman about #candycrush #bejeweled #shariki #nphard #computerscience Shariki is a puzzle game developed by the russian programmer Eugene Alemzhin in 1994. The rules are simple: (...) matching three or more balls of the same color in line (vertical or horizontal). These balls then explode and a new ones appear in their place.The first Shariki's clone is Tetris Attack, a fusion between Shariki and the most famous Tetris, also this developed in Soviet Union by Alexey Pajitnov. But the […]

Toby Walsh (2014). Candy Crush is NP-hard, arXiv:

Luciano Gualà, Stefano Leucci & Emanuele Natale (2014). Bejeweled, Candy Crush and other Match-Three Games are (NP-)Hard, arXiv:

Citation
+
Algorithmic Darwinism
The workshop on computational theories of evolution started off on Monday, March 17th with Leslie Valiant — one of the organizers — introducing his model of evolvability (Valiant, 2009). This original name was meant to capture what type of complexity can be achieved through evolution. Unfortunately — especially at this workshop — evolvability already had […]

Feldman, V. (2008). Evolvability from learning algorithms., Proceedings of the 40th annual ACM symposium on Theory of Computing, 619-628. DOI:

Citation
+
Computational theories of evolution
If you look at your typical computer science department’s faculty list, you will notice the theorists are a minority. Sometimes they are further subdivided by being culled off into mathematics departments. As such, any institute that unites and strengthens theorists is a good development. That was my first reason for excitement two years ago when […]

Angelino, E. & Kanade, V. (2014). Attribute-efficient evolvability of linear functions., Proceedings of the 5th conference on Innovations in Theoretical Computer Science, 287-300. DOI:

Citation
+
Breve storia del pi greco - parte 2
Come l'anno scorso, anche quest'anno ecco l'estrazione delle notizie pi greche per far loro posto in un articolo a parte, consono per l'aggregazione. Ovviamente il Carnevale della Matematica #71 dedicato al pi day è sempre a disposizione per la consultazione.Warped di Mike Cavna via Bamdad's Math Comics Una volta introdotto nella matematica il $\pi$, uno dei problemi a margine per la determinazione delle sue cifre fu, evidentemente, comprenderne la sua natura, ovvero che genere di numero esso […]

Laczkovich M. (1997). On Lambert's Proof of the Irrationality of π, The American Mathematical Monthly, 104 (5) 439-443. DOI:

Zhou L. & Markov L. (2010). Recurrent Proofs of the Irrationality of Certain Trigonometric Values, American Mathematical Monthly, 117 (4) 360-362. DOI:

Niven I. (1947). A simple proof that $\pi$ is irrational, Bulletin of the American Mathematical Society, 53 (6) 509-510. DOI:

Chow T.Y. (1999). What is a Closed-Form Number?, The American Mathematical Monthly, 106 (5) 440. DOI:

Bailey D.H., Plouffe S.M., Borwein P.B. & Borwein J.M. (1997). The quest for PI, The Mathematical Intelligencer, 19 (1) 50-56. DOI:

Jesus Guillera (2008). History of the formulas and algorithms for pi, La Gaceta de la RSME, 10 (2007) 159-178, arXiv:

Aragón Artacho F.J., Bailey D.H., Borwein J.M. & Borwein P.B. (2013). Walking on Real Numbers, The Mathematical Intelligencer, 35 (1) 42-60. DOI:

Bailey D.H., Borwein J.M., Calude C.S., Dinneen M.J., Dumitrescu M. & Yee A. (2012). An Empirical Approach to the Normality of π, Experimental Mathematics, 21 (4) 375-384. DOI:

Aistleitner C. (2013). Normal Numbers and the Normality Measure, Combinatorics, Probability and Computing, 22 (03) 342-345. DOI:

Citation
+
Breve storia del pi greco - parte 2
Come l'anno scorso, anche quest'anno ecco l'estrazione delle notizie pi greche per far loro posto in un articolo a parte, consono per l'aggregazione. Ovviamente il Carnevale della Matematica #71 dedicato al pi day è sempre a disposizione per la consultazione.Warped di Mike Cavna via Bamdad's Math Comics Una volta introdotto nella matematica il $\pi$, uno dei problemi a margine per la determinazione delle sue cifre fu, evidentemente, comprenderne la sua natura, ovvero che genere di numero esso […]

Laczkovich M. (1997). On Lambert's Proof of the Irrationality of π, The American Mathematical Monthly, 104 (5) 439-443. DOI:

Zhou L. & Markov L. (2010). Recurrent Proofs of the Irrationality of Certain Trigonometric Values, American Mathematical Monthly, 117 (4) 360-362. DOI:

Niven I. (1947). A simple proof that $\pi$ is irrational, Bulletin of the American Mathematical Society, 53 (6) 509-510. DOI:

Chow T.Y. (1999). What is a Closed-Form Number?, The American Mathematical Monthly, 106 (5) 440. DOI:

Bailey D.H., Plouffe S.M., Borwein P.B. & Borwein J.M. (1997). The quest for PI, The Mathematical Intelligencer, 19 (1) 50-56. DOI:

Jesus Guillera (2008). History of the formulas and algorithms for pi, La Gaceta de la RSME, 10 (2007) 159-178, arXiv:

Aragón Artacho F.J., Bailey D.H., Borwein J.M. & Borwein P.B. (2013). Walking on Real Numbers, The Mathematical Intelligencer, 35 (1) 42-60. DOI:

Bailey D.H., Borwein J.M., Calude C.S., Dinneen M.J., Dumitrescu M. & Yee A. (2012). An Empirical Approach to the Normality of π, Experimental Mathematics, 21 (4) 375-384. DOI:

Aistleitner C. (2013). Normal Numbers and the Normality Measure, Combinatorics, Probability and Computing, 22 (03) 342-345. DOI:

Citation